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bstract

Expert systems are proposed in order to analyze thermogravimetric profiles. The methodology showed to be an efficient tool as a complementary
rocedure for experimentalists in the area of themogravimetric analysis. Several simple and complex molecules were used to validate the developed
ethodology. The advantage of the actual approach can be attributed to its efficient error minimization for each weigh loss and global process. In
ddition, the proposed expert system presents a low computational demanding. The validation analysis using compounds such as salicylato (amine)
o (III) complexes, norfloxacin complexes of manganese (II) and cobalt (II), and calcium borate produced an average confidence interval of about
%.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The thermogravimetric (TG) analysis correlates the weight
oss as a function of temperature. The experimental mea-
urements allow evaluation of thermal stability, reaction rate,
eaction mechanisms and the determination of sample composi-
ion [1,2]. In general, the thermogravimetric device is constituted
y: (i) balance (thermo balance), (ii) furnace, (iii) furnace inert
r reactive atmosphere and (iv) microcomputer for instrumental
ontrol, data acquisition and presentation [2,3].

The data interpretation is performed by an analyst and
herefore it is required experimental expert analysts for ther-

ogravimetric analyses. The human expert has an objective of
ttributing the weight losses for specified sample components
or compounds) released during the analysis. In the interpre-
ation process, the analyst should provide all decompositions
or each weight loss. However, such a task may be considered
xhaustive for a human expert due to the number of possible

ecompositions for a specified system with particular attention
o complex molecules. Usually, the amount of data (possible
ifferent compounds) is large enough to produce incorrect inter-

∗ Corresponding author. Tel.: +55 31 3499 5775; fax: +55 31 3499 5700.
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retations. Nevertheless, simple compounds can be analyzed,
lthough uncorrected interpretations can be found. For exam-
le, the decomposition of acetylsalicylic acid was previously
nterpreted [4] as H2O + CO + CO2. However, the correct anal-
sis determined in Ref. [5] showed to be a loss of acetic acid
olecule.
Artificial intelligence techniques such as neural networks

re widely applied in different branches of sciences. Particu-
arly in chemistry we have recently proposed an approach to
eal with drug controlled release [6] and blood plasma simu-
ations [7]. Artificial intelligent systems based on mathematical
echniques [8] may be also useful for analyzing thermogravimet-
ic curves such as the determination of thermal decomposition
odels, searching patterns in TG curves, acquisition of thermal

roperties and the determination of instrumental parameters.
or example, artificial neural networks have been applied for
nalyzing the influence of several models for thermal decom-
ositions [9]. Similarly, multivariate statistical methods are also
requently applied in order to analyze thermogravimetric data
10–13]. Therefore, these approaches have shown to be impor-
ant tools in order to contribute to the TG analysis. Particularly,

he experimental parameters such as heating rate, final tem-
erature and gas pressure can produce a great influence in the
uantitative and qualitative results of thermal analysis. Mainly,
hese parameters are important for high-resolution analysis [14].

mailto:jadson@ufmg.br
dx.doi.org/10.1016/j.tca.2006.10.017
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he determination of experimental conditions is able to accom-
lish computational systems, mainly based on expert system
echniques [15]. The fuzzy logic approach, for instance, has
een applied to determine the relationship between molecular
ragments and spectral parameters using database of molecular
pectra [16–19].

This work will deal with an algorithm that composes an expert
ystem. The approach is proposed to be considered as an alter-
ative or complementary tool for analyzing thermogravimetric
ata. The system is based on heuristic rules used for interpret-
ng thermogravimetric data and acquisition of new knowledge,
imilar to human experts. For the latter case, the new acquisition
ay be added as new data or new rules in the proposed expert

ystem. As will be discussed, the application of this expert sys-
em can contribute to mostly reduce errors and also to provide
tandard procedures for the interpretation process, particularly
ealing with TG data.

. Methodology—expert system

An expert system can be defined considering a system based
n knowledge that is capable of solving problems in which
uman experience is generally necessary. Expert systems can
e created based on rules that manipulate the knowledge and
llow efficient search, based on symbolically or numerically
easoning [20–23]. The structure of expert systems can be, in
rinciple, constructed considering three main parts: knowledge
ase, inference machine and user interface [24–26].

Examples of expert system development through knowledge
ase can be found elsewhere [24–32] and, in general, the knowl-
dge of human expert can transform information into logic

ormulations for solving problems [27]. The knowledge base
ay be therefore represented by facts, search trees; seman-

ics net and heuristic rules [28]. The Semantic net is generally
efined as a direct graph that may be applied in several con-

w
I
l
i

Fig. 1. Algorithm to analyze processes of thermogravimetric data. (Part
mica Acta 452 (2007) 140–148 141

ents, for example, psychological models of human memory,
hysical structures or causal bonds and inter-relationship of ele-
ents into economical models [24]. Similarly, heuristic rules

re employed in several problems such as spectra interpreta-
ions [19] or medical diagnose [29,30]. As shown in the latter
orks one can verify that expert systems provide a more efficient

nalysis than exhaustive standard procedures analyzed through
pace of possible solutions [31,32].

The machine inference can be considered as an elaborate
rotocol to search in heuristic rules and knowledge representa-
ion data in order to solve problems. In general, the inference
elects and applies the more appropriate rules and it deter-
ines the application of special rules in each execution step

f an expert system [20]. Particularly, the user interface makes
he relationship between users and expert system [24]. More-
ver, the validation is performed in order to evaluate the system
apability of solving problems correctly and the corresponding
omputational performance [24].

For the particular case of thermo analysis, an expert system
an be considered a useful tool in order to help the experimen-
alist for interpreting chemical thermal decompositions. In this
ase the thermogravimetric analysis may be carried out by con-
idering the mass variation as a function of temperature and/or
ime. The application of this procedure can be used to determine

ass changes for several sequential reactions. In general, the
olecular decomposition route for typical thermogravimetric

nalyses has well defined steps and each of them has a specific
olecular fragment [33]. Therefore, the analysis is performed

hrough considering each weight loss for one or more molecular
ragments.

In the present work the expert system interpretation process

as constructed considering two steps. The first step (Fig. 1: Part

) was developed based on the fragment set of the molecule. The
atter algorithm was then applied for preparing data to be used
n the second step (Fig. 1: Part II). This second step combines

I) fragment set (NOX = 0) and (Part II) interpretation TG curves.
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fragments (all possible allow combinatory components) should
be found; however, the semantic net determines only 15
different fragments. All determined fragments are marked with
different symbols to differentiate allow and forbidden molecular
Fig. 2. Search tree for molecu

he fragments in agreement with inference machine in order to
nd better interpretation of TG curves.

The fragmentation process has two algorithms namely
emantic and binary, and each one is specialized to different
inds of molecules. The semantic net algorithm is more appro-
riated for molecules that present a large number of repeated
toms. This net is able to eliminate repeated fragments and
hereby simplifies the structure of the search tree.

The present thermogravimetric analysis only considers neu-
ral molecular fragments. Therefore, all analyzed molecules
ave an oxidation number (NOX) equal to zero. The expert
ystem may employ a set of heuristic rules to classify molec-
lar fragments into valid (NOX = 0) or not valid (NOX �= 0)
OX condition. Fig. 2 shows the search tree used to evaluate

ll classifications. The validation process is initiated by search-
ng fragments in the database (database 1) that contains only
tructures with NOX equal to zero. For example, ammonium
nd carbonic gas frequently occur in thermogravimetric analy-
es [33,35]. If a fragment search is not found in the first database
hen it is searched in the second database (database 2). The latter
ontains structures with electrical charges (ions), for example,
O3

−2 and NH4
+ used in order to classify not valid structures.

The next test is based on a set of heuristic rules in which
hemical functions are defined. At the present analysis, the
ystem has seven heuristic rules, in which three are chemical
unctions: oxide, hydroxide and hydrocarbons, and four are salt
efinitions: sulfates, halogens salts, carbonates, ammonium and
lkaline elements salts. If any fragment does not belong to any of
hese chemical functions, the system starts for the first analysis
y evaluating the NOX calculation. For the latter case one has

wo output types: (i) if the calculated NOX is equal to zero, the

olecular fragment is assign as valid and is added to the database
NOX = 0); (ii) if the NOX value is not zero, the fragment is elim-
nated. Therefore, those fragments already classified as not valid

F
s

gment validation (NOX = 0).

ill not be taken into account in any new fragment calculations.
ccordingly, this provides lower computational demanding and
ence lower computational time is achieved.

The new inclusions in the search tree (Fig. 2) may be super-
ised by a human expert and modifications can be done to avoid
ncrement of wrong information. Thus, the inclusion of any new
nformation is added after occurrence of incorrect interpreta-
ion. The latter procedure provides an improvement of the whole
xpert system.

Fig. 3 shows a semantic net of molecular fragmentation tak-
ng CaCO3 as an example. The validation process can illustrate
he search tree algorithm. In this particular case, 31 molecular
ig. 3. Semantic tree for CaCO3 fragmentation. Triangles repeated fragments,
quares valid fragments and forbidden fragments (circles).
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ragments. However, due to the combinatorial analysis these
ragments do not exist and therefore their charges are not
elevant for the final analysis. For example, for the particular
ase of CaCO3 one observes in Fig. 3 these types of compounds
uch as CaO3, CaCO, CaCO2. Although some fragments are
hemically charged, for simplify, these charges are not shown
n Fig. 3. For example, CO3 (circle) should be CO3

−2. All
hese fragments are classified as not valid. The semantic net
liminates every repeated molecular fragment, thereby; the
O2 is shown twice in Fig. 3. However, only one fragment

s allowed and the other which is forbidden (triangle), is not
enerated as any fragment for the next layer. The valid fragment
et is marked as square, in which has NOX value equal to zero,
or example CaO, CO, CO2, etc.

The second fragmentation algorithm, binary net, is more
ppropriated to molecules with few repeated atoms. The binary
et makes all possible fragments, that is to say, 2n − 1, where n is
he number of atoms in the molecule. Therefore, these two clas-
ification algorithms can be considered the most time consuming
or the present expert system. Fig. 4 compares the competition
f each classification based on these two algorithms.

The second step of the actual expert system (Fig. 1: Part II)
s started with an association of molecular fragments with the
orrespondent weight loss, but this attribution is only used for
bsolute errors smaller or equal than confidence interval (IC).
his quantity can be defined by the expert analyst or evaluated
y the proposed expert system. For that, one can calculate the

C according to

C = min{|W1
exp − W1

cal|, |W2
exp − W2

cal|, . . . , |WN
exp − WN

cal|}
(1)

s
t
t
d

ig. 4. Computational time for the fragmentation algorithm: binary net (triangle) and
a) CPU time for different number of atoms; (b) CPU time for homology series; (c
ifferent atoms.
mica Acta 452 (2007) 140–148 143

here N is the total number of weight loss, Wi
exp the experi-

ental weight loss and Wi
cal is the calculated weight loss for

ragment attribution. Therefore, the expert system evaluates the
onfidence analysis by itself or through the analyst definition.
his means that each weight loss has a subset of valid fragment
et. Each subset of weight loss presents at least one molecular
ragment. In the case of empty subset, Eq. (1) is applied to restart
he process. The system also evaluates a relative error, which is
alculated as given by

rror = |Wi
exp − Wi

cal|
Wi

exp
× 100 (2)

here i corresponds to i-esim weight loss, Wi
exp the experimen-

al weight loss and Wi
cal is the calculated weight loss for each

ragment attribution. In the next step (Fig. 1), the subsets of all
ragments are organized in a semantic network. This network is
onstructed in layers and each layer represents one weight loss
nd each vertex in one layer that corresponds to one associated
olecular fragment. The edges characterize the sum operation

etween one vertex and an adjacent vertex in the next layer. The
nal result for the thermogravimetric analysis using a semantic
etwork interaction is obtained only for absolute errors smaller
r equal to the confidence interval. Particularly, if the solution
s not determined, the IC is modified and a new search is per-
ormed (Fig. 1: Part II). In the present study the analysis showed
hat the expert system can find more than one solution and the

ystem provides all possible fragments. In this particular case,
he expert analyst should select the correct interpretation solu-
ion that is more appropriated for the correct thermogravimetric
ata.

semantic net (square) using Intel®, PC Pentium 4®, 3.0 GHz, 1.0 GB of RAM.
) CPU time for molecules between homology series and compounds with all
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. Mathematical background

The present expert system has been proposed based on
he strategies of heuristic rules [24]. These rules can be
onstructed through the mathematical logic (ML) formalism
36–38]. Therefore, the flowchart shown in Fig. 2 defines the
lgorithm for these rules that produce the molecular fragment
alidation (NOX = 0). In order to describe the actual approach
ets assume that a specified molecular fragment F will be
nalyzed using the ML procedure. The classification can be
one according to valid fragments (Fv) and not valid ones
Fn). All fragments are produced considering a combinatorial
ecomposition analysis and we will return to this point
ater.

The fragment search in the database for a valid fragment is
valuated according to the following premise: “If there is F in
alid fragment set then the fragment (F) is classified as valid
ragment, otherwise F will be submitted to the next heuristic
ule.” This first rule can be written as1

(∃(F ∈ Sv)) → (F = Fv)] ∨ [(¬∃(F ∈ Sv)) → Nr] (3)

here Sv is a valid set of a specified chemical function, for
xample, ammonium and carbonic gas, Fv the valid molecular
ragment and Nr means the next heuristic rule. A similar reason-
ng is used to set not valid fragments. The search in the database
s performed according to

(∃(F ∈ Snv)) → (F = Fn)] ∨ [(¬∃(F ∈ Snv)) → Nr] (4)

here Snv is a set of molecular structures with charge (ions),
or example, NH4

+ and CO3
2−, and Fn is a not valid molec-

lar fragment. However, if a fragment cannot be classified in

atabase, the expert system activates a set of heuristic rules with
hemical functions definitions. The first rules define inorganic
ompounds, with oxides and halogenated compounds, and these
ules have the following premises:

Every compound must have a functional atom, oxygen or
halogen, and any other chemical element.
There is a sum of NOX values for each atom that must be equal
to zero. These premises can be mathematically formulated as

(F = Fb) ↔ ∃(Fgru ⊂ F ) ∧ ∃(Xi
oe ⊂ F )∧((

m∑
i

) )⎤⎥⎦

(F = Fh) ↔
(

∀(C ⊂ F )∃(4 bonds) ∧ ∀(H

∀(C ⊂ F )∃(Bn(single ∨ (double ∧ single) ∨ (d
∃ n(Fgru) × NOx(Fgru) +
i=1

NOx(Xoe) = 0

→ (F = Fv) (5)

1 Details of the mathematical means of logic operators can be found in Refs.
24,27].

f
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t
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here Fb is a binary chemical function (oxide or halogenated
ompound), Fgru an atom of functional group (O, F, Cl, Br or
), Xi

oe an other chemical atom, n(Xoe) the quantity of func-
ional group, NOX(Fgru) and NOX(Xoe) are functions that return
he NOX value of an i-esim atom or functional group and m is
he total number of different atoms of each functional group
omposition. The same construction is used for other chemical
unctions and some salts, as hydroxide, sulfate, carbonate, salts
f alkaline metals and ammonium salts, can be evaluated as

(F = Fhscaa) ↔ ∃(Fgru ⊂ F ) ∧ ∃
(

n(Fgru) × NOx(Fgru)

+
m∑

i=1

NOx(Xi
oe)

)
= 0

]
→ (F = Fv) (6)

here Fhscaa is a representation for chemical functions and com-
ounds classes (hydroxide, sulfate, carbonate, salts of alkaline
etals and ammonium salts).
Organic functions need more specific rules. The heuristic for

ydrocarbon function can be defined according to the following
remises:

Hydrocarbons must have only carbon and hydrogen atoms in
their compositions.
Each carbon atom must have four chemical bonds and hydro-
gen’s have only one chemical bond.
Each carbon atom is defined in order to have the following
bonds: four single, two single and one double bonds; two
double, one single and one triple bonds.

The following equation can summarize these rules:

)∃(1 bond)∧
le ∧ double) ∨ (triple ∧ single)))

)]
→ F = Fv (7)

here Fh is a hydrocarbon function, C the carbon atom, H the
ydrogen atom, Bn defines a combinatorial function for all types
f carbon bonds. If the molecular fragment is not classified, the
ast rule for validation and the NOX value is calculated for all
toms according to

(F = Fv) ↔ ∃
(

m∑
i=1

NOx(Xi
oe) = 0

))

∨
(

F = Fn ↔ ¬∃
(

m∑
i=1

NOx(Xi
oe) = 0

))
(8)

here m is the total number of atoms. After validation of a
ragment set, the system starts to search the solution for thermo-
ravimetric data through the semantic net. Each interaction for
he semantic net is classified as solution (R) or not solution (L).

his classification depends on the difference between evaluated
eight loss and experimental weight loss. If this difference is

maller than the confidence interval (IC) value then the interac-
ion is classified as valid, otherwise the interaction is classified
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Table 1
Molecules and valid fragments sets analyzed with fragmentation algorithms:
binary and semantic nets

Molecule Fragments (NOX = 0)

CaCO3 CO, CO2, CaO, O2, Ca, C
CaC2O4·H2O H2O, Ca(OH)2, CaCO3, H2, CO, CO2, CaO,

CaC2, O2, Ca, C
Mg(CHO2)2·2H2O H2O, Mg(OH)2, MgCO3, MgO, H2, CO, CO2,

O2, Mg, C
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for TG devices [35]. For this particular compound three weight
losses appear in the TG curves [35] and there is not simulta-
G.P. Voga, J.C. Belchior / Therm

s a not valid solution. This premise can be written as

R ↔
h∑

i=1

(abs(Wcal(F
i) − Wi

exp) ≤ IC)

)

∨
(

L ↔
h∑

i=1

(abs(Wcal(F
i) − Wi

exp) > IC)

)
(9)

here R is a set of fragments and the corresponding calculated
eight loss for a valid solution, L a not valid answer with frag-
ents and the corresponding calculated weight loss, Wcal(Fi)
function that calculates the percentage of one fragment or a

et of fragments associated with i-esim weight loss, h the num-
er of weight lost and IC denotes the confidence interval that
orresponds to the maximum absolute error.

. Discussion and results

The expert system can be validated using accurate tests and
valuating its performance. These tests have to be applied to sim-
le and complex chemical systems. In the present study several
eatures were tested: fragmentation capability, computational
ime of fragmentation algorithms; interpretation capability, total
omputational time of interpretation algorithm and interpreta-
ion of complexes TG curves.

The proposed expert system depends on the definition of
arameters that are used for the classification rules of each algo-
ithm (two) as shown in Fig. 1 (Part I) and Fig. 2. The first
arameter, which is reported in Fig. 4a, is related to the molec-
lar size. If the molecule is formed with a number of different
toms smaller than 12, the computational time for binary and
emantic nets are almost the same. For molecules with more
han 12 different atoms, the semantic net has a greater com-
utational cost and both have almost an exponential behavior
s can be seen in Fig. 4a. Another parameter is based on the
tomic rate. This parameter is defined as the ration between the
umber of different atoms and total number of atoms. It can be
onsidered as the contribution of each atom to generate repeated
olecular fragments in the search tree with respect to the whole
olecule. The dependence of computational time for this param-

ter is shown in Fig. 4(b and c). Fig. 4(b) presents the results
or homology series (alkanes, alkenes, etc.), that is to say, more
xtensive chemical structures that produce atomic rates smaller
han 0.1. The semantic set algorithm is more appropriated to be
pplied in compounds with large number of repeated atoms, in
hich the search tree can simplify the procedure by eliminating

epeated fragments. The behavior between homology series and
olecules with all different atoms is shown in Fig. 4(c). If the

tomic rate is smaller than 0.75, one expects that the semantic
et can produce better performance. However, if this ratio is
reater than 0.75 one verifies an inversion of the time demand-
ng and the binary net presents lower computational cost than
he semantic net.
The fragmentation test is presented in Table 1. Only
olecules with NOX = 0 were analyzed and used in order to

erify simple fragmentation cases. In general, valid fragment
ets produce fragments that may not exist for real analysis. For

n

[Cu(NH3)4]SO4·H2O CuO, Cu2O, O2, S, SO2, SO3, NH3, CuS, N2, H2,
H2S·H2O, Cu, CuSO4

xample, H2, or O3 cannot be detected in a thermogravimetric
nalysis. However, these structures are found due to the com-
inatorial behavior of the algorithms developed for the present
tudy.

The proposed expert system (Fig. 2) has three classes of vali-
ation fragments: search in database, heuristic rules to chemical
unctions and NOX evaluation. In the present case the heuristic
ules provide the smallest computational time. The computa-
ional cost may be reduced with the addition of new heuristic
ules, but very particular fragments do not need any new rules
ince these type of fragments may be added in the database.
very valid molecular fragment is found by calculating NOX and

s added to the database and hence, the computational cost may
e reduced of about 80%. The appropriate fragmentation algo-
ithms for larger molecules, such as organometallic complexes,
roduce the valid fragment sets between 50 and 100 s.2

The fragmentation algorithms are based on a combina-
orial behavior; therefore, the approach can eventually find
ncommon molecular fragments. For example, the fragment
et of CaC2O4·H2O has CaC2. However, this compound may
ot exist in its thermo decomposition [33]. The fragmenta-
ion set for larger molecules can produce larger numbers of
ncommon molecular fragments. For example, in the case of
Cu(NH3)4]SO4·H2O compound, the system found 14 valid
ragments but only four possible decompositions appear in the
hermogravimetric analysis [39].

A detailed interpretation of those compounds shown in
able 1 is reported in Table 2. The relative error is calculated for
ach weight loss (Eq. (2)). In contrast, the IC parameter (Eq. (1))
s evaluated for each analysis. The confidence interval shown in
able 2 can be changed to higher values and hence the expert
ystem can find more solutions than the previous analysis. This
ondition allows the system to find more solutions. In this situ-
tion the selected fragments can be determined by the analyst.
herefore, better solutions for an adequate interpretation are

ound for the thermogravimetric data. All interpretation results
eported in Table 2 quantitatively agree with the human expert
nterpretation according to Refs. [33–35]. For example, the cal-
ium oxalate shown in Table 2 is used as standard calibration
eous decompositions. In this particular case the system looses

2 Intel®, PC Pentium 4®, 3.0 GHz, 1.0 GB of RAM.
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Table 2
Thermogravimetric data interpretation evaluated by the present approach for different compounds

Molecule Degradation step Experimental
weight lost (%)

Calculated
weight lost (%)

Correspond toa Relative error (%)a IC (%)a Time (s)

CaCO3 1 44.03 43.97 CO2 0.14
Residue 55.94 56.03 CaO 0.16 0.09 0.015

CaC2O4H2O 1 12.32 12.32 H2O 0
2 18.88 19.17 CO 1.5
3 29.04 30.12 CO2 3.71
Residue 39.77 38.38 CaO 3.49 1.39 0.015

Mg(CHO2)2·2H2O 1 23.67 23.96 2H2O 1.22
2 49.10 49.23 H2O + 2CO2 0.26
Residue 27.23 26.80 MgO 1.58 0.42 0.200

[Cu(NH3)4]SO4·H2O 1 20.83 21.19 H2O + 2NH3 1.72
2 6.03 6.93 NH3 14.92
3 6.97 6.93 NH3 0.57
4 32.56 32.57 SO3 0.03
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Residue 33.61 32.36

a Expert system results.

2O, starting at 76 ◦C and finishing at 190 ◦C [35]. The next step
hich is characterized by CO molecule occurs between 400 and
23 ◦C [35]. In contrast, the first and second decomposition steps
or [Cu(NH3)4]SO4·H2O produce a shoulder in the TG curve.
owever, this fact does not have influence in the expert sys-

em interpretation and the attribution loss of NH3 is correct as
xperimentally determined in Refs. [39,40]. The residue for the
ecomposition of Mg(CHO2)2·2H2O described in Ref. [40] is
lso correctly determined by the expert system and it is attributed
s MgO. However, this compound may contain a small amount
f carbon that is considered as contamination and hence, this
ttribution may be not fully corrected. For the particular case of
Cu(NH3)4]SO4·H2O [39] at 892 ◦C, the expert system deter-
ined the residue in which was attributed to CuO with a higher

elative error equal to 3.71% and 1.3% for the confidence inter-
al. This result was also experimentally determined with the
ame relative error [39].

All these tests (Table 2) show that the proposed expert sys-
em can be, in principle, efficient to deal with themogravimetric
nalysis. However, all molecules described in Table 2 can be con-
idered simple cases due to their chain size. Therefore, larger
ystems need to be tested in order to provide a more accu-
ate analysis of the actual approach. Considering complex data
rom the literature in which the corresponding thermogravi-
etric curves usually show several steps decompositions can

omplete the actual analysis. For that, seven compounds namely
alicylato (amine) Co (III) complexes, norfloxacin complexes of
anganese (II) and cobalt (II), and calcium borate were taken as

alidation tests. Table 3 compares the literature results and those
ragments obtained by using the present approach. In general,
he expert system has a high efficiency since each attribution
or decomposition steps is correct, according to a quantitative
greement with the literature results [41–43]. The determination

f fractional stequiometric index is considered as a limitation of
he expert system, also reported in Table 3.

For the particular example of compound 4 one observes a
ore difficult analysis. In this case, there is a partial overlap

t
[
v
H

CuO 3.71 1.30 4.15

etween steps II and III. In Ref. [41], these steps were reported as
.6trien and 0.4trien + Cl + sal, respectively. The present expert
ystem found only two weight losses for all decomposition pro-
ess. The first loss was attributed as one water molecule and
he second weight loss, which is equivalent to 80%; was defined
s trien + Cl + sal. Therefore, if thermogravimetric analyses pro-
uce overlap steps and fractional stequimetric index, the expert
uman analyst needs to infer to obtain a better solution. In this
ase, the analyst needs to combine both weight losses (0.6trien
nd 0.4trien + Cl + sal) in order to determine the correct TG
nterpretation. Accordingly, the results of interpretation process
rovide an indicative for the decomposition attribution.

As described in Ref. [42], the Co(II) (5) and Mn(II) (6) car-
ied out under a N2 flown. These norfloxacin complexes have
ore than 100 atoms and this can be considered an efficient test

or the proposed expert system. The cobalt complex (5) has two
ecomposition steps. The first was attributed as four hydration
ater molecules. And the second step was associated to oth-

rs four water molecules and norfloxacin molecular fragments,
hat defines a larger step, with 71.21% of weight loss. The same
ehavior is observed for manganese complex (6), but the thermo-
ravimetric analysis produces three steps. The first and second
teps are attributed as four hydration water molecules each. The
hird step corresponds to norfloxacin and acetic ligant degrada-
ion. The residue composition has a common component, which
s associated to carbon atoms, in both norfloxacin complexes.
s observed for compound (5) there are four carbon atoms as
residue and this is considered as a common residue for this

articular case of cobalt and manganese complexes.
In general, hydration water molecules are well defined dur-

ng the weight loss and this always presents an absolute error
maller that 1% [33]. This condition is then used by the expert
ystem to evaluate the number of hydration water molecules in

he system. The substance (7) is a calcium borate mono hydrated
38]. The interpretation of this compound has a confidence inter-
al equal to 0.6% and it is attributed to only one water molecule.
owever, if the compound has two water molecules then the
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Table 3
Interpretation of TG curve of complex chemical systems with large structures

Complex Molecule Degradation
step

Experimental
weight loss (%)a

Calculated
weight loss (%)a

Relative
error (%)a

IC (%)a Correspond toa

1, Ref. [41] [Co(en)2sal]Cl·2H2Ob I 9.2 8.9 3.2 2H2O
II 30.2 29.7 5.7 2en
III 43.9 42.9 2.3 Sal + Cl
Residue 16.1 18.5 14.9 2.5 CoOc

2, Ref. [41] [Co(en)2(C2H5NH2)salH](NO3)2·H2Ob I 3.60 3.57 0.8 H2O
II 31.00 31.62 2.0 2NO2 + O2 + CH3NH2

III 24.20 23.83 1.5 2en
IV 25.00 27.20 8.8 Sal
Residue 16.20 14.85 8.3 2.5 CoOc

3, Ref. [41] [Co(NH3)5salH](NO3)2·H2Ob I 4.20 4.24 0.9 H2O
II 4.60 4.01 12.8 NH3

III 75,00 77.84 3.8 4NH3 + NO2 + O2 + salH
Residue 16.20 17.66 9.0 3.0 CoOc

4, Ref. [41] �-cis-[Co(trien)sal]Cl·H2Ob I 4.33 4.36 0.7 H2O
II 23.43 80 – Trine + Cl + sal
III 57.20 –
Residue 15.0 18.15 21 3.15 CoOc

5, Ref. [42] [Co(nor)2]SO4·8H2Ob I 7.62 7.70 1.0 4H2O
II 71.21 70.67 0.8 11C2H2 + 3C2H4 + 6NO

+ 2HF + 4H2O
Residue 21.17 21.65 2.3 0.7 CoSO4 + 4C

6, Ref. [42] Mn(nor)2(CH3CO2)2·8H2Ob I 7.49 7.55 0.8 4H2O
II 7.51 7.55 0.5 4H2O
III 72.02 72.42 0.6 11C2H2 + 4C2H4 + 6NO

+ H2O + 2CO + 2HF
Residue 12.98 12.45 4.0 2 MnO + 4C

7, Ref. [43] (CaO)2B2O3·H2O I 9.62 9.01 6.34 H2O
90.38 90.98 0.7 0.6 Ca2O2B2O3

mine
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a Expert system results.
b Here, salH is C6H4(OH)CO2

−, en is ethylenediamine, trien is triethynetetra
c The correct attribution is Co3O4, that is reported in Ref. [41].

onfidence interval increases to 1.9%. A more accurate analysis
s performed by adding up to 10 water molecules. In this case
he confidence interval is greater than 2%. Due to the smallest IC
0.6%) the methodology attributes for this particular compound
7) only one hydration water molecule.

. Conclusion

The present work dealt with an approach to analyze and car-
ies out interpretation of thermogravimetric data using an expert
ystem methodology. Efficient fragmentation analysis is done
hrough two algorithms, namely binary and semantic nets. Inter-
retation process was performed via association between valid
olecular fragments and each weight loss. The procedure was

arried out using semantic net algorithm as a function of temper-
ture. The automation for interpreting chemical processes was
erformed in order to create the inference method to determine
hermogravimetric analysis.

The actual expert system can, in principle, generate a large

umber of decomposition routes in which may be not adequately
nalyzed by humans due to their inherent limitations. The advan-
age of the present approach can be attributed to its efficient error

inimization for each weigh loss and global process. However,

p
I
c

and nor is norfloxacin.

here are disadvantages. For example, for the particular case
f multiple step TGA in which there are poor resolved steps
he actual expert system can use the human inference or keep-
ng evaluating the decomposition but considering the analysis
hrough the differential thermal analysis (DTG) curve. In this
ase each weight loss in TG curve is determined by the differ-
nce between two local maximum in the DTG curve. Similarly,
he analysis of polymers cannot be performed with the actual
xpert system in its present form. One of the reasons is attributed
o the unresolved empirical formula for the polymer (number of

onomers). The system needs empirical formula definitions to
btain a set of valid molecular fragments. In this case, it is nec-
ssary a new implementation to increase a distribution of the
omposition to be used for polymers analysis. The expert sys-
em may be also applied to the case of parallel decomposition
eactions through the combination of valid fragments in only
ne weight loss. However, in its present form such analyses are
ot implemented. In addition, another limitation is concerned
ith the determination of fractional stequiometric indexes.

Finally, the validation tests showed the viability of using the

roposed methodology for interpreting thermogravimetric data.
n addition, the computational cost is compatible with micro-
omputers. Accordingly, the system may be considered as a
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